Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pflugers Arch ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573347

RESUMEN

Cancer is the second leading cause of mortality worldwide. Despite recent advances in cancer treatment including immunotherapy with immune checkpoint inhibitors, new unconventional biomarkers and targets for the detection, prognosis, and treatment of cancer are still in high demand. Tumor cells are characterized by mutations that allow their unlimited growth, program their local microenvironment to support tumor growth, and spread towards distant sites. While a major focus has been on altered tumor genomes and proteomes, crucial signaling molecules such as lipids have been underappreciated. One of these molecules is the membrane phospholipid phosphatidylserine (PS) that is usually found at cytosolic surfaces of cellular membranes but can be rapidly and massively shuttled to the extracellular leaflet of the plasma membrane during apoptosis to serve as a limiting factor for immune responses. These immunosuppressive interactions are exploited by tumor cells to evade the immune system. In this review, we describe mechanisms of immune regulation in tumors, discuss if PS may constitute an inhibitory immune checkpoint, and describe current and future strategies for targeting PS to reactivate the tumor-associated immune system.

2.
Artículo en Inglés | MEDLINE | ID: mdl-34942381

RESUMEN

Neutrophils are key players in inflammation initiation and resolution. Little attention has been paid to the detailed biosynthesis of specialized pro-resolving mediators (SPM) in these cells. We investigated SPM formation in human polymorphonuclear leukocytes (PMNL), in broken PMNL preparations and recombinant human 5-lipoxygenase (5-LO) supplemented with the SPM precursor lipids 15-Hydroxyeicosatetraenoic acid (15-HETE), 18-Hydroxyeicosapentaenoic acid (18-HEPE) or 17-Hydroxydocosahexaenoic acid (17-HDHA). In addition, the influence of 5-LO activating protein (FLAP) inhibition on SPM formation in PMNL was assessed. Intact human PMNL preferred ARA over DHA for lipid mediator formation. In contrast, in incubations supplemented with the SPM precursor lipids DHA-derived 17-HDHA was preferred over 15-HETE and 18-HEPE. SPM formation in the cells was dominated by 5(S),15(S)-diHETE (800 pmol/20 mio cells) and Resolvin D5 (2300 pmol/20 mio cells). Formation of lipoxins (<10 pmol/20 mio cells), E-series (<70 pmol/20 mio cells) and other D-series resolvins (<20 pmol/20 mio cells) was low and only detected after addition of the precursor lipids. Upon destruction of cell integrity, formation of lipoxins and 5(S),15(S)-diHETE increased while formation of 17-HDHA- and 18-HEPE-derived SPMs was attenuated. Recombinant 5-LO did not accept the precursors for SPM formation and FLAP inhibition prevented the formation of the 5-LO-dependent SPMs. Together with the data on FLAP inhibition our results point to unknown factors that control SPM formation in human neutrophils and also render lipoxin and 5(S),15(S)-diHETE formation independent of membrane association and FLAP when cellular integrity is destroyed.


Asunto(s)
Ácidos Docosahexaenoicos
3.
Circulation ; 143(9): 935-948, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33307764

RESUMEN

BACKGROUND: In vascular endothelial cells, cysteine metabolism by the cystathionine γ lyase (CSE), generates hydrogen sulfide-related sulfane sulfur compounds (H2Sn), that exert their biological actions via cysteine S-sulfhydration of target proteins. This study set out to map the "S-sulfhydrome" (ie, the spectrum of proteins targeted by H2Sn) in human endothelial cells. METHODS: Liquid chromatography with tandem mass spectrometry was used to identify S-sulfhydrated cysteines in endothelial cell proteins and ß3 integrin intraprotein disulfide bond rearrangement. Functional studies included endothelial cell adhesion, shear stress-induced cell alignment, blood pressure measurements, and flow-induced vasodilatation in endothelial cell-specific CSE knockout mice and in a small collective of patients with endothelial dysfunction. RESULTS: Three paired sample sets were compared: (1) native human endothelial cells isolated from plaque-free mesenteric arteries (CSE activity high) and plaque-containing carotid arteries (CSE activity low); (2) cultured human endothelial cells kept under static conditions or exposed to fluid shear stress to decrease CSE expression; and (3) cultured endothelial cells exposed to shear stress to decrease CSE expression and treated with solvent or the slow-releasing H2Sn donor, SG1002. The endothelial cell "S-sulfhydrome" consisted of 3446 individual cysteine residues in 1591 proteins. The most altered family of proteins were the integrins and focusing on ß3 integrin in detail we found that S-sulfhydration affected intraprotein disulfide bond formation and was required for the maintenance of an extended-open conformation of the ß leg. ß3 integrin S-sulfhydration was required for endothelial cell mechanotransduction in vitro as well as flow-induced dilatation in murine mesenteric arteries. In cultured cells, the loss of S-sulfhydration impaired interactions between ß3 integrin and Gα13 (guanine nucleotide-binding protein subunit α 13), resulting in the constitutive activation of RhoA (ras homolog family member A) and impaired flow-induced endothelial cell realignment. In humans with atherosclerosis, endothelial function correlated with low H2Sn generation, impaired flow-induced dilatation, and failure to detect ß3 integrin S-sulfhydration, all of which were rescued after the administration of an H2Sn supplement. CONCLUSIONS: Vascular disease is associated with marked changes in the S-sulfhydration of endothelial cell proteins involved in mediating responses to flow. Short-term H2Sn supplementation improved vascular reactivity in humans highlighting the potential of interfering with this pathway to treat vascular disease.


Asunto(s)
Cadenas beta de Integrinas/química , Compuestos de Sulfhidrilo/química , Animales , Cromatografía Líquida de Alta Presión , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Cisteína/química , Disulfuros/análisis , Disulfuros/química , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Sulfuro de Hidrógeno/farmacología , Cadenas beta de Integrinas/metabolismo , Mecanotransducción Celular , Ratones , Resistencia al Corte , Espectrometría de Masas en Tándem , Vasodilatación/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
4.
Front Immunol ; 11: 1447, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760397

RESUMEN

Alcoholism is one of the leading and increasingly prevalent reasons of liver associated morbidity and mortality worldwide. Alcoholic hepatitis (AH) constitutes a severe disease with currently no satisfying treatment options. Lipoxin A4 (LXA4), a 15-lipoxygenase (ALOX15)-dependent lipid mediator involved in resolution of inflammation, showed promising pre-clinical results in the therapy of several inflammatory diseases. Since inflammation is a main driver of disease progression in alcoholic hepatitis, we investigated the impact of endogenous ALOX15-dependent lipid mediators and exogenously applied LXA4 on AH development. A mouse model for alcoholic steatohepatitis (NIAAA model) was tested in Alox12/15+/+ and Alox12/15-/- mice, with or without supplementation of LXA4. Absence of Alox12/15 aggravated parameters of liver disease, increased hepatic immune cell infiltration in AH, and elevated systemic neutrophils as a marker for systemic inflammation. Interestingly, i.p. injections of LXA4 significantly lowered transaminase levels only in Alox12/15-/- mice and reduced hepatic immune cell infiltration as well as systemic inflammatory cytokine expression in both genotypes, even though steatosis progressed. Thus, while LXA4 injection attenuated selected parameters of disease progression in Alox12/15-/- mice, its beneficial impact on immunity was also apparent in Alox12/15+/+ mice. In conclusion, pro-resolving lipid mediators may be beneficial to reduce inflammation in alcoholic hepatitis.


Asunto(s)
Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Hepatitis Alcohólica/metabolismo , Inflamación/metabolismo , Lipoxinas/metabolismo , Hígado/fisiología , Neutrófilos/inmunología , Animales , Modelos Animales de Enfermedad , Hepatitis Alcohólica/genética , Humanos , Inflamación/genética , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Neutrófila/genética
5.
Eur J Pharmacol ; 833: 328-338, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29920284

RESUMEN

Macrophages undergo activation by pathophysiological stimuli to pro-inflammatory and bactericidal, or wound-healing and anti-inflammatory phenotypes, termed M1 or M2, respectively. Dysregulation of the M1-M2 balance is often associated with inflammatory diseases. Therefore, mechanisms of macrophage polarization may reveal new drug targets. We profiled six compounds with claimed modulatory effects on macrophage polarization using peripheral blood monocyte-derived macrophages. Based on the distinct mRNA or protein expression in macrophages stimulated either with M1 [lipopolysaccharide (LPS) + interferon-γ, IFNγ] or M2 interleukin-4 (IL-4) stimuli, we selected a combination of M1 (IL1ß, tumor necrosis factor-α,TNFα, CC chemokine receptor 7, CCR7 and CD80) and M2 (chemokine (C-C motif) ligand 22, CCL22, CD200R and mannose receptor C type 1, MRC1) markers to monitor drug effects on "M1 polarization" or cells "pre-polarized to M1". Azithromycin (25-50 µM), tofacitinib (2.5-5 µM), hydroxychloroquine (40 µg/ml) and pioglitazone (15-60 µM) exhibit an anti-inflammatory profile because they downregulated M1 markers and upregulated some M2 markers when given both before and after M1 polarization. Lovastatin given before M1 polarization downregulated M1 marker genes but enhanced the M1 phenotype in macrophages pre-polarized with LPS and IFNγ. Methotrexate (1.25-5 µM) did not modulate macrophage polarization. We have, thus, established a test system suitable to identify novel compounds or repurposed drugs that modulate inflammatory macrophage plasticity. Compounds with potential to reduce expression of molecules involved in inflammatory T cell activation (IL-1ß, TNFα, CD80), while enhancing production of a major chemokine involved in recruitment of Tregs (CCL22) may be of interest for treating chronic inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Diferenciación Celular/efectos de los fármacos , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Antiinflamatorios/uso terapéutico , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular/inmunología , Células Cultivadas , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , Regulación hacia Abajo , Evaluación Preclínica de Medicamentos/métodos , Humanos , Inflamación/inmunología , Interferón gamma/inmunología , Interleucina-4/inmunología , Leucocitos Mononucleares , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , ARN Mensajero/metabolismo
6.
Free Radic Biol Med ; 83: 77-88, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25687825

RESUMEN

NF-E2-related factor 2 (Nrf2), known to protect against reactive oxygen species, has recently been reported to resolve acute inflammatory responses in activated macrophages. Consequently, disruption of Nrf2 promotes a proinflammatory macrophage phenotype. In the current study, we addressed the impact of this macrophage phenotype on CD8(+) T cell activation by using an antigen-driven coculture model consisting of Nrf2(-/-) and Nrf2(+/+) bone marrow-derived macrophages (BMDMΦ) and transgenic OT-1 CD8(+) T cells. OT-1 CD8(+) T cells encode a T cell receptor that specifically recognizes MHC class I-presented ovalbumin OVA(257-264) peptide, thereby causing a downstream T cell activation. Interestingly, coculture of OVA(257-264)-pulsed Nrf2(-/-) BMDMΦ with transgenic OT-1 CD8(+) T cells attenuated CD8(+) T cell activation, proliferation, and cytotoxic function. Since the provision of low-molecular-weight thiols such as glutathione (GSH) or cysteine (Cys) by macrophages limits antigen-driven CD8(+) T cell activation, we quantified the amounts of intracellular and extracellular GSH and Cys in both cocultures. Indeed, GSH levels were strongly decreased in Nrf2(-/-) cocultures compared to wild-type counterparts. Supplementation of thiols in Nrf2(-/-) cocultures via addition of glutathione ester, N-acetylcysteine, ß-mercaptoethanol, or cysteine itself restored T cell proliferation as well as cytotoxicity by increasing intracellular GSH. Mechanistically, we identified two potential Nrf2-regulated genes involved in thiol synthesis in BMDMΦ: the cystine transporter subunit xCT and the modulatory subunit of the GSH-synthesizing enzyme γ-GCS (GCLM). Pharmacological inhibition of γ-GCS-dependent GSH synthesis as well as knockdown of the cystine antiporter xCT in Nrf2(+/+) BMDMΦ mimicked the effect of Nrf2(-/-) BMDMΦ on CD8(+) T cell function. Our findings demonstrate that reduced levels of GCLM as well as xCT in Nrf2(-/-) BMDMΦ limit GSH availability, thereby inhibiting antigen-induced CD8(+) T cell function.


Asunto(s)
Médula Ósea/inmunología , Linfocitos T CD8-positivos/inmunología , Cistina/metabolismo , Glutatión/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Macrófagos/inmunología , Factor 2 Relacionado con NF-E2/fisiología , Animales , Antioxidantes/metabolismo , Apoptosis , Western Blotting , Médula Ósea/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular , Células Cultivadas , Citometría de Flujo , Antígenos de Histocompatibilidad Clase I/metabolismo , Técnicas para Inmunoenzimas , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Ovalbúmina/inmunología , Ovalbúmina/metabolismo , Estrés Oxidativo , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
7.
Circulation ; 130(12): 976-86, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25015343

RESUMEN

BACKGROUND: Vitamin D deficiency in humans is frequent and has been associated with inflammation. The role of the active hormone 1,25-dihydroxycholecalciferol (1,25-dihydroxy-vitamin D3; 1,25-VitD3) in the cardiovascular system is controversial. High doses induce vascular calcification; vitamin D3 deficiency, however, has been linked to cardiovascular disease because the hormone has anti-inflammatory properties. We therefore hypothesized that 1,25-VitD3 promotes regeneration after vascular injury. METHODS AND RESULTS: In healthy volunteers, supplementation of vitamin D3 (4000 IU cholecalciferol per day) increased the number of circulating CD45-CD117+Sca1+Flk1+ angiogenic myeloid cells, which are thought to promote vascular regeneration. Similarly, in mice, 1,25-VitD3 (100 ng/kg per day) increased the number of angiogenic myeloid cells and promoted reendothelialization in the carotid artery injury model. In streptozotocin-induced diabetic mice, 1,25-VitD3 also promoted reendothelialization and restored the impaired angiogenesis in the femoral artery ligation model. Angiogenic myeloid cells home through the stromal cell-derived factor 1 (SDF1) receptor CXCR4. Inhibition of CXCR4 blocked 1,25-VitD3-stimulated healing, pointing to a role of SDF1. The combination of injury and 1,25-VitD3 increased SDF1 in vessels. Conditioned medium from injured, 1,25-VitD3-treated arteries elicited a chemotactic effect on angiogenic myeloid cells, which was blocked by SDF1-neutralizing antibodies. Conditional knockout of the vitamin D receptor in myeloid cells but not the endothelium or smooth muscle cells blocked the effects of 1,25-VitD3 on healing and prevented SDF1 formation. Mechanistically, 1,25-VitD3 increased hypoxia-inducible factor 1-α through binding to its promoter. Increased hypoxia-inducible factor signaling subsequently promoted SDF1 expression, as revealed by reporter assays and knockout and inhibitory strategies of hypoxia-inducible factor 1-α. CONCLUSIONS: By inducing SDF1, vitamin D3 is a novel approach to promote vascular repair.


Asunto(s)
Calcitriol/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Regeneración/efectos de los fármacos , Adulto , Animales , Quimiocina CXCL12/fisiología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Masculino , Ratones , Células Mieloides/efectos de los fármacos , Receptores CXCR4/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA